

TETRAHEDRON

Tetrahedron 59 (2003) 6095-6102

Enzymatic synthesis of optically active 1- and 2-aminoalkanephosphonates $\stackrel{\text{tr}}{\sim}$

Chengye Yuan,* Chengfu Xu and Yonghui Zhang

Shanghai Institute of Organic Chemistry, Chinese Academy of Science 345Lingling Lu, Shanghai 200032, People's Republic of China

Received 22 January 2003; revised 20 May 2003; accepted 17 June 2003

Abstract—A number of 1- and 2-aminoalkanephosphonates were resolved with high enantioselectivity by Candida antarctica lipase B-catalyzed acetylation. By this method, optically pure aminoalkanephosphonates and amidoalkanephosphonates, the precursors of the corresponding aminoalkanephosphonic acids, were synthesized. © 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Chiral aminoalkanephosphonates have received considerable attention due to their negligible mammalian toxicity and close chemical resemblance to amino acids, which makes them extremely important as antimetabolites.¹ They also serve as key substrates in the synthesis of phosphonopeptides.^{1a} Surprisingly, however, there are only a few reports regarding the asymmetric synthesis of aminoalkanelphosphonic acids.²

Biocatalytic resolution of racemic molecules has attracted the interest of synthetic chemists for several decades.³ Lipases, the most commonly used enzymes in organic synthesis, have been utilized in the resolution of racemic amines via aminolysis and transesterification.⁴ To the best of our knowledge, however, there are still no reports concerning the lipase-catalyzed resolution of aminoalkanephosphonates.

Recently we have developed the Candia antarctic lipase B (CALB)- and Candida rugosa lipase (CRL)-catalyzed resolution of hydroxyalkanephosphonates.⁵ Now we wish to report that CALB can serve as an effective catalyst in the enantioselective acetylation of aminoalkanephosphonates using ethyl acetate or ethyl 1-methoxyacetate as acylating reagent.

2. Results and discussion

In our previous study, vinyl acetate was chosen as the acylating reagent for the enzymatic resolution of hydroxyalkanephosphonates.⁵ Because of their stronger nucleophilicity, aminoalkanephosphonates, however, reacted with vinyl acetate even in the absence of CALB to give the corresponding amides. Ethyl acetate was therefore used as both the acylating reagent and the solvent to resolve diethyl 2-aminopropylphosphonate (1a) (Scheme 1). To determine the enantiomeric value of the amine, diethyl 2-aminopropylphosphonate 2a was converted to its benzyloxycarbamate derivative **4a**.⁶

As shown in Scheme 1, CALB-catalyzed acylation of 1a using ethyl acetate as an acetylating reagent led to optically enriched 2a and 3a with ee values of 97 and 88% respectively. Under the same conditions, however, the enantioselectivity of the resolution of diisopropyl 2-aminopropylphosphonate was very low (Table 1). To improve the enantioselectivity, different solvents were examined⁷ (Table 1). It was found that diisopropyl ether was the best reaction medium not only for 1c but also for other 2-aminoalkanephosphonates' substrates (Scheme 2).

The configuration of the resulting 2-aminoalkanephosphonates (2) was assigned as S based on the optical rotation of (S)-2-aminopropanephosphonic acid derived from $2a^{2a}$ (Scheme 3).

The results in Table 2 indicated that vinyl-substituted 1g was not a suitable substrate, and almost no conversion was observed. According to the general trends observed for CALB-catalyzed resolution,9 in most cases, the medium group (R¹) should not be too large for good selectivity. Here, when ethyl is R^1 the enantioselectivity is moderate, but the

 $^{^{\}ddagger}$ Studies on organophosphorus compounds 127.

Keywords: aminoalkanephosphonate; Candida antarctica lipase B; acetylation; kinetic resolution.

^{*} Corresponding author. Tel.: +86-21-6416-3300; fax: +86-21-6416-6128; e-mail: yuancy@mail.sioc.ac.cn

^{0040-4020/\$ -} see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0040-4020(03)00995-5

Scheme 1.

Table 1. Effect of solvent on catalytical acetylation by CALB

Substrate	Time (days)	Acylating reagent	Solvent	Ratio ^a	ee%		E^{b}
					2c ^c	3c ^d	
$NH_2 O$	3	Ethyl acetate	Diisopropyl ether 1,4-Dioxane	1:4	70 47	100 100	>200 >200
P(OPT)2			<i>n</i> -Hexane Ethyl acetate		58 54	100 64	>200 8

^a Ratio of the acylating reagent to the solvent.

^b The enantiomeric ratio, $E = \ln[(1-c)(1-ees)]/\ln[(1-c)(1+ees)] = \ln[1-c(1+eep)]/\ln[1-c(1-eep)]; c = ees/(ees + eep).⁸$

^c The ee values were determined by the chiral HPLC of their derivatives 4c.

^d The ee values were determined by the chiral HPLC.

Scheme 2.

enantioselectivity dropped dramatically in the case of R^1 being the vinyl group. This selectivity is quite different from those of the corresponding 2-hydroxyalkanephosphonates.^{5a}

We then turned to the resolution of 1-aminoalkanephosphonates that are the precursors of 1-aminoalkanephosphonic

Scheme 3.

 Table 2. CALB catalyzed enantioselective acetylation of 2-aminoalkanephosphonates

Entry	Substrate	R^1	R ²	Time (days)	2		3		Ε
					Yield (%)	ee (%) ^a	Yield (%)	ee (%) ^b	
1	1a	Ме	Et	5	40	99.5	54	78	64
2	1b	Me	<i>n</i> -Pr	5	41	100	53	76	> 80
3	1c	Me	<i>i</i> -Pr	7	40	100	55	72	>70
4	1d	Et	Et	7	44	64	42	79	16
5	1e	Et	<i>n</i> -Pr	10	41	56	40	74	12
6	1f	Et	<i>i</i> -Pr	10	43	26	41	41	<5
7	1g	Vinyl	Et	1	0	0	>90	0	0

^a The ee values were determined by the chiral HPLC of their derivative 4.

^b The ee values were determined by the chiral HPLC.

C. Yuan et al. / Tetrahedron 59 (2003) 6095-6102

Scheme 4.

Table 3. CALB-catalyzed enantioselective acetylation of 1-aminoalkanephosphonates

Entry	Substrate	R ¹	R ²	Time (days)	7		8		Ε
					Yield (%)	ee (%) ^a	Yield (%)	ee (%) ^b	
1	6a	Me	Et	5	41	99.7	48	90	>100
2	6b	Me	<i>n</i> -Pr	5	42	90	42	98	>200
3	6c	Me	<i>i</i> -Pr	5	44	96	43	98	>200
4	6d	Et	Et	5	73	18	10	100	>200
5	6e	CF ₃	Et	5	No reaction				

^a The ee values were determined by the chiral HPLC of their derivatives 9.
 ^b The ee values were determind by the chiral HPLC of 8.

Scheme 5.

acids, an important class of potentially bioactive compounds (Scheme 4). The results are listed in Table 3.

Because of the low reactivity of ethyl acetate toward substrate **6d**, we selected ethyl 1-methoxyacetate¹⁰ as the

Table 4. CALB catalyzed enantioselective acetylation of 1-aminopropylphosphonates

Entry	Substrate	R ¹	Time (days)	7		10		Ε
				Yield (%)	ee (%) ^a	Yield (%)	ee (%) ^b	
1 2	6d 6f	Et <i>n</i> -Pr	5 5	40 41	98 91	54 53	_c 70	- 17

^a The ee values were determined by the chiral HPLC of their derivative 9. ^b The ee values were determined by the chiral HPLC of **10**.

^c **10d** can not be determined by chiral HPLC.

acyl group to resolve these compounds (Scheme 5) with satisfactory results (Table 4).

It should be pointed out that the preparation of optically active 1-amino-2,2,2-trifluoroethanephosphonates by this methodology was unsuccessful even with the prolonged of reaction time.

That (S)-1- and (R)-2-aminoalkanephosphonates were preferentially acetylated under catalysis by CALB is in accordance with the general rule⁹ predicted for CALB catalyzed resolutions (Fig. 1).

3. Conclusion

In conclusion, a number of 1- and 2-aminoalkanephosphonates have been successfully resolved by a CALBcatalyzed acetylation process. The high enantioselectivities

Figure 1. Configuration of the preferential enantiomer of aminoalkylphosphonate acetylation catalyzed by CALB.

achieved in these reactions as well as the simplicity of the procedure makes this strategy a useful alternative for the preparation of optically pure aminoalkanephosphonates.

4. Experimental

4.1. General methods

IR spectra were recorded on a Shimadzu IR-440 spectrometer. EI mass spectra (MS) were run on a HP-5989A mass spectrometer. ¹H NMR spectra were recorded on a Bruker AMX-330 (300 MHz) spectrometer in CDCl₃ and chemical shifts were reported in ppm downfield relative to TMS (internal standard).

CALB (Novozym 435) is a gift from the Novo Norvodisk Co. Solvents used for enzymatic reactions were dried by standard methods and stored over 4 Å sieves before use.

4.2. General procedure for the preparation of 1- or 2-aminoalkylphosphonates¹¹

A solution of Ph₃P (3.14 g, 12 mmol) in CH₂Cl₂ (20 mL) was added dropwise with stirring and external cooling to a solution of DEAD (2.09 g, 12 mmol) in CH₂Cl₂ (5 mL) at -5° C. The mixture was cooled to -10° C and a solution of HN₃ in CHCl₃ (10 mL)¹² was added dropwise. After stirring for 5 min at 0°C, the 1- or 2-hydroxyalkanephosphonate⁵ (10 mmol) was added. The mixture was kept for 30 min at 0°C, and stirring was then continued for 24 h at rt. The white precipitate was filtered off, and the filtrate was evaporated under reduced pressure. The residue was extracted with *n*-hexane (3×50 mL). The combined extracts were evaporated in vacuum. The oily residue was dissolved in benzene (15 mL) and Ph₃P (2.75 g, 10.5 mmol) was added in one portion to the solution. After stirring 2 h at rt, water (1.8 mL, 0.1 mol) was added, and the mixture was heated for 4.5 h at 50-55°C. The reaction mixture was cooled to rt and extracted with aq. HCl (3×5 mL). The combined acid extracts were washed with ethyl acetate (3×15 mL). The acid phase was neutralized to pH=8-9 with Na₂CO₃ and then extracted with ethyl acetate (3×15 mL). The combined organics were washed with brine (3×25 mL) then dried over Na₂SO₄ and evaporated in vacuum to furnish the product.

4.3. General procedure for CALB-catalyzed acetylation of aminoalkane phosphonates

To the aminoalkanephosphonate (100 mg) in diisopropyl ether (2.4 mL) and ethyl acetate (0.6 mL) was added CALB (35 mg). The reaction mixture was kept at 30°C. When the reaction proceeded to a certain conversion rate, the enzyme was filtered, and washed with ethyl acetate (10 mL). The

volatiles were removed under reduced pressure and the residue was subjected to flash chromatography to furnish almost pure aminoalkanephosphonates and their acetamides.

The aminoalkylphosphonates **6d**, **6g**, **6h** (100 mg) were dissolved in diisopropyl ether (1.0 mL) and ethyl 1-methoxyacetate (0.2 mL).

4.3.1. (*S*)-Diethyl 2-aminopropanephosphonate (2a).¹³ Colourless oil; $[\alpha]_D^{20}$ =+6.6 (*c* 0.70, CH₃OH); ν_{max} (liquid film) 3436, 2984, 2911, 1226, 1053, 1026, 966 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 4.92–4.05 (4H, m, OCH₂CH₃), 3.43– 3.40 (1H, m, CHNH₂), 2.07–1.79 (2H, m, CH₂P(O)), 1.38– 1.31 (6H, m, OCH₂CH₃), 1.23–1.19 (3H, m, NH₂CHCH₃); *m*/*z* (EI) 195 (9, M⁺), 177 (5), 154 (5), 117 (6), 89 (20), 69 (27), 45 (29), 44 (100%).

4.3.2. (*R*)-Diethyl 2-acetylaminopropanephosphonate (3a). Colourless oil; $[\alpha]_{D}^{20} = +12.0$ (*c* 0.70, CH₃OH); ν_{max} (liquid film) 3437, 3280, 2984, 2936, 1656, 1553, 1232, 1053, 1027, 967 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{CDCl}_{3})$ 6.53 (1H, d, *J*=6.9 Hz, *NH*), 4.43–4.32 (1H, m, *CH*NH), 4.20–4.09 (4H, m, OCH₂CH₃), 2.08–2.01 (2H, m, *CH*₂P(O)), 2.00 (3H, s, COCH₃), 1.39–1.28 (9H, m, OCH₂CH₃, NH₂CHCH₃); *m/z* (EI) 238 (100, M⁺+1), 194 (34), 180 (24), 179 (18), 152 (34), 125 (21), 123 (22), 43 (27%); HRMS (EI): M⁺, found: 237.1115. C₉H₂₀NO₄P requires 237.1130.

4.3.3. (*S*)-Diethyl 2-benzyloxycarbonylaminopropanephosphonate (4a). colorless oil; [Found: C, 54.66; H, 7.58; N, 4.14. $C_{15}H_{24}NO_5P$ requires C, 54.71; H, 7.35; N, 4.25%] [α]_D²⁰=+3.0 (*c* 0.60, CH₃OH); ν_{max} (liquid film) 3271, 3065, 2982, 2910, 1719, 1537, 1255, 1055, 1028, 963 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.38–7.30 (5H, m, C₆H₅), 5.52 (1H, d, *J*=6.3 Hz, N*H*), 5.10 (2H, s, OCH₂Ph), 4.17– 4.03 (5H, m, OCH₂CH₃, NHCHCH₃), 2.12–1.97 (2H, m, CH₂P(O)), 1.35–1.25 (9H, m, OCH₂CH₃, CHCH₃); *m/z* (EI) 329 (14, M⁺), 270 (3), 222 (78), 194 (17), 152 (26), 125 (20), 91 (100), 65 (11), 57 (17%).

4.3.4. (*S*)-Dipropyl 2-aminopropanephosphonate (2b). Colourless oil; $[\alpha]_D^{20}$ +10.9 (*c* 1.60, CH₃OH); ν_{max} (liquid film) 3367, 2968, 2881, 1236, 1068, 994, 904 cm⁻¹; $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 4.06–3.94 (4H, m, OCH₂CH₂CH₃), 3.42–3.37 (1H, m, CHNH₂), 1.96–1.81 (2H, m, CH₂P(O)), 1.79–1.64(4H, m, OCH₂CH₂CH₃), 1.20 (3H, dd, *J*=6.3, 2.1 Hz, NH₂CHCH₃), 0.97 (6H, m, OCH₂CH₂CH₃); *m/z* (EI) 223 (2, M⁺), 208 (23), 167 (27), 139 (53), 125 (26), 124 (45), 97 (100), 57 (57), 44 (29%); HRMS (EI): M⁺, found: 223.1360. C₉H₂₂NO₃P requires 223.1337.

4.3.5. (*R*)-Dipropyl 2-acetylaminopropanephosphonate (**3b**). Colourless oil; [Found: C, 50.08; H, 9.16; N, 5.31. $C_{11}H_{24}NO_4P$ requires C, 49.80; H, 9.12; N, 5.28%]; $[\alpha]_D^{20} = +12.5$ (*c* 1.10, CH₃OH); ν_{max} (liquid film): 3284, 2972, 2939, 2882, 1674, 1550, 1236, 1067, 998 cm⁻¹; $\delta_{H}(300 \text{ MHz, CDCl}_3)$ 6.55 (1H, d, J=7.5 Hz, NH), 4.39– 4.30 (1H, m, CHNH), 4.06–3.94 (4H, m, OCH₂CH₂CH₃), 2.06–1.98 (2H, dq, $J=18.0, 5.4 \text{ Hz, CH}_2P(O)$), 1.96 (3H, s, COCH₃), 1.76–1.63 (4H, m, OCH₂CH₂CH₃), 1.32 (3H, d, $J=6.6 \text{ Hz, NHCHCH}_3$), 0.99–0.93 (6H, dt, J=7.8, 3.3 Hz,

OCH₂CH₂CH₃); *m*/*z* (EI) 265 (8, M⁺), 222 (62), 208 (51), 166 (29), 139 (88), 124 (28), 123 (54), 97 (100), 43 (52%).

4.3.6. (*S*)-Dipropyl 2-benzyloxycarbonylaminopropanephosphonate (4b). Colourless oil; [Found: C, 56.95; H, 8.01; N, 3.76. $C_{17}H_{28}NO_5P$ requires C, 57.13; H, 7.90; N, 3.92%] [α]_D²⁰=+3.0 (*c* 1.40, CH₃OH); ν_{max} (liquid film) 3271, 3036, 2971, 2881, 1720, 1537, 1256, 1066, 1041, 998 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.37–7.29 (5H, m, C₆H₅), 5.46 (1H, d, *J*=4.3 Hz, N*H*), 5.08 (2H, s, OCH₂Ph), 4.13–3.92 (5H, m, OCH₂CH₂CH₃, NHCHCH₃), 2.10–1.97 (2H, m, CH₂P(O)), 1.71–1.60 (4H, m, OCH₂CH₂CH₃), 1.33 (3H, d, *J*=6.9 Hz, NHCHCH₃), 0.97–0.91 (6H, dt, *J*=7.5, 3.6 Hz, OCH₂CH₂CH₃); *m*/*z* (EI) 357 (100, M⁺), 298 (4), 251 (5), 222 (7), 180 (7), 167 (5), 138 (7), 92 (8), 65 (9%).

4.3.7. (*S*)-Diisopropyl 2-aminopropanephosphonate (2c). Colourless oil; [Found: C, 48.66; H, 9.65; N, 6.35. $C_9H_{22}NO_3P$ requires C, 48.42; H, 9.93; N, 6.27%]; $[\alpha]_D^{20} = +6.6$ (*c* 1.25, CH₃OH); ν_{max} (liquid film) 3368, 2980, 2935, 1386, 1236, 1009, 983 cm⁻¹; δ_H (300 MHz, CDCl₃) 4.90–4.83 (2H, m, OCH(CH₃)₂), 4.56–3.41 (1H, m, CHNH₂), 2.17–2.07 (2H, m, CH₂P(O)), 1.50 (12H, dd, J=6.0, 2.1 Hz, OCH(CH₃)₂), 1.32 (3H, dd, J=6.6, 1.5 Hz, NH₂CHCH₃); *m*/*z* (EI) 223 (9, M⁺), 208 (11), 180 (29), 166 (37), 138 (62), 124 (83), 96 (100), 80 (27), 57 (37), 44 (54%).

4.3.8. (*R*)-Diisopropyl 2-acetylaminopropanephosphonate (3c). Colourless oil; $[\alpha]_D^{20} = +16.4$ (*c* 1.05, CH₃OH); ν_{max} (liquid film) 3419, 3282, 2980, 2936, 1657, 1553, 1367, 1230, 1011, 988 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.53 (1H, d, *J*=6.6 Hz, N*H*), 4.78–4.62 (2H, m, OCH(CH₃)₂), 4.40–4.26 (1H, m, C*H*NH₂), 1.99–1.91 (2H, m, C*H*₂P(O)), 1.97 (3H, s, COC*H*₃), 1.35–1.30 (15H, m, OCH(C*H*₃)₂, NHCHC*H*₃); *m/z* (EI) 265 (21, M⁺), 250 (3), 222 (31), 180 (54), 164 (94), 138 (100), 124 (77), 97 (99), 58 (21), 43 (51%); HRMS (EI): M⁺, found: 265.1451. C₁₁H₂₄NO₄P requires 265.1443.

4.3.9. (*S*)-Diisopropyl 2-benzyloxycarbonylaminopropanephosphonate (4c). Colourless oil; [Found: C, 56.89; H, 8.04; N, 3.69. $C_{17}H_{28}NO_5P$ requires C, 57.13; H, 7.90; N, 3.92%] [α]_D²⁰=+2.6 (*c* 1.45, CH₃OH); ν_{max} (liquid film) 3270, 3036, 2980, 2935, 2878, 1717, 1538, 1253, 1107, 985 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.37–7.28 (5H, m, C₆H₅), 5.49 (1H, d, *J*=2.7 Hz, N*H*), 5.10 (2H, s, OCH₂Ph), 4.75–4.65 (2H, m, OCH(CH₃)₂), 4.17–4.05 (1H, m, NHC*H*), 2.10–1.91 (2H, m, CH₂P(O)), 1.35–1.25 (15H, m, OCH(CH₃)₂, CHCH₃); *m*/*z* (EI) 357 (16, M⁺), 315 (6), 256 (13), 208 (17), 166 (100), 123 (21), 91 (92), 65 (8%).

4.3.10. (*S*)-Diethyl 2-aminobutanephosphonate (2d).¹³ Colourless oil; $[\alpha]_{20}^{20} = +7.3$ (*c* 2.65, CH₃OH); ν_{max} (liquid film) 3502, 3370, 3300, 2981, 2910, 1240, 1057, 1029, 962 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{ CDCl}_3)$ 4.18–4.07 (4H, m, OCH₂CH₃), 3.14–3.12 (1H, m, CHNH₂), 2.05–1.93 (2H, m, CH₂P(O)), 1.80–1.44 (2H, m, CHCH₂CH₃), 1.37–1.32 (6H, m, OCH₂CH₃), 0.95 (3H, t, *J*=7.5 Hz, CHCH₂CH₃); *m*/*z* (EI) 209 (1, M⁺), 180 (100), 152 (43), 124 (60), 106 (44), 97 (22), 80 (21), 71 (33), 58 (34), 43 (22%).

4.3.11. (*R*)-Diethyl 2-acetylaminobutanephosphonate (3d). Colourless oil; [Found: C, 48.02; H, 8.90; N, 5.52.

C₁₀H₂₂NO₄ P requires C, 47.80; H, 8.82; N, 5.57%]; $[\alpha]_{D}^{20}$ = +23.0 (*c* 0.60, CH₃OH); ν_{max} (liquid film) 3284, 2976, 2912, 1653, 1327, 1229, 1028, 964 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{CDCl}_{3})$ 6.51 (1H, d, *J*=8.4 Hz, N*H*), 4.23–4.06 (5H, m, OCH₂CH₃, C*H*NH), 2.19–2.00 (2H, m, CH₂P(O)), 1.98 (3H, s, COCH₃), 1.70–1.64 (2H, m, CHCH₂CH₃), 1.37–1.27 (6H, m, OCH₂CH₃), 0.96–0.90 (3H, m, CHCH₂CH₃); *m*/*z* (EI) 222 (7, M⁺–29), 180 (100), 152 (40), 137 (15), 125 (14), 124 (30), 106 (14), 97 (12), 55 (9), 43 (23%).

4.3.12. (*S*)-Diethyl 2-benzyloxycarbonylaminobutanephosphonate (4d). Colourless oil; [Found: C, 55.69; H, 7.85; N, 3.84. $C_{16}H_{26}NO_5P$ requires C, 55.97; H, 7.63; N, 4.08%]; $[\alpha]_D^{20} = -2.2$ (*c* 1.50, CH₃OH); ν_{max} (liquid film) 3271, 3036, 2987, 2935, 2879, 1720, 1539, 1244, 1056, 1029, 966 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{CDCl}_3)$ 7.35–7.28 (5H, m, C_6H_5), 5.44 (1H, d, *J*=35.7 Hz, *NH*), 5.09 (2H, s, OCH₂Ph), 4.15–4.00 (4H, m, OCH₂CH₃), 3.97–3.80 (1H, m, *CHNH*), 2.08–1.98 (2H, m, *CH*₂P(O)), 1.32–1.23 (6H, m, OCH₂CH₃), 0.93 (3H, t, *J*=7.2 Hz, CHCH₂CH₃); *m/z* (EI) 343 (13, M⁺), 314 (9), 270 (41), 236 (42), 208 (9), 180 (30), 152 (11), 137 (11), 91 (100), 65 (7%).

4.3.13. (*S*)-Dipropyl 2-aminobutanephosphonate (2e). Colourless oil; $[\alpha]_{20}^{2D} = +6.4$ (*c* 0.50, CH₃OH); ν_{max} (liquid film): 3372, 2976, 2880, 1240, 1068, 995, 904, 848 cm⁻¹; $\delta_{\rm H}(300 \text{ MHz}, \text{ CDCl}_3)$ 4.06–3.96 (4H, m, OCH₂CH₃), 3.16–3.11 (1H, m, CHNH₂), 2.06–1.96 (2H, m, CH₂P(O)), 1.82–1.65 (4H, m, OCH₂CH₂CH₃), 1.55–1.43 (2H, m, CHCH₂CH₃), 1.00–0.93 (9H, m, OCH₂CH₂CH₃, CHCH₂CH₃); m/z (EI) 238 (5, M⁺+1), 208 (83), 166 (44), 136 (17), 124 (100), 106 (31), 97 (37), 71 (31), 58 (30), 43 (39%); HRMS (EI): M⁺, found: 237.1502. C₁₀H₂₄NO₃P requires 237.1494.

4.3.14. (*R*)-Dipropyl 2-acetylaminobutanephosphonate (**3e**). Colourless oil; $[\alpha]_{20}^{20} =+10.0$ (*c* 0.75, CH₃OH); ν_{max} (liquid film) 3439, 3281, 2970, 2881, 1656, 1554, 1228, 1066, 1000, 952, 855 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{CDCl}_3)$ 6.43 (1H, d, *J*=8.7 Hz, N*H*), 4.31–4.06 (1H, m, C*H*NH), 4.03–3.93 (4H, m, OC*H*₂CH₂CH₃), 2.07–2.00 (2H, m, C*H*₂P(O)), 1.99 (3H, s, COC*H*₃), 1.76–1.62 (6H, m, OCH₂C*H*₂CH₃, CHC*H*₂CH₃), 0.96–0.90 (9H, m, OCH₂CH₂CH₃, CHC*H*₂-C*H*₃); *m*/*z* (EI) 281 (43, M+2⁺), 251 (7), 208 (100), 178 (15), 166 (37), 137 (27), 124 (58), 106 (14), 97 (39), 43 (34%); HRMS (EI): M⁺, found: 279.1627. C₁₂H₂₆NO₄P requires 279.1600.

4.3.15. (*S*)-Dipropyl 2-benzyloxycarbonylaminobutanephosphonate (4e). Colourless oil; [Found: C, 58.41; H, 8.29; N, 3.59. $C_{18}H_{30}NO_5P$ requires C, 58.21; H, 8.14; N, 3.77%]; $[\alpha]_D^{20} = -1.5$ (*c* 0.65, CH₃OH); ν_{max} (liquid film) 3271, 3036, 2969, 2930, 2880, 1721, 1538, 1243, 1068, 998 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.36–7.26 (5H, m, C₆H₅), 5.41 (1H, d, *J*=8.1 Hz, N*H*), 5.09 (2H, s, OCH₂Ph), 4.00– 3.90 (5H, m, *CH*NH, OCH₂CH₂CH₃), 2.09–2.00 (2H, m, *CH*₂P(O)), 1.74–1.60 (6H, m, OCH₂CH₂CH₃, CHCH₂-CH₃), 0.97–0.90 (9H, m, OCH₂CH₂CH₃, CHCH₂CH₃); *m/z* (EI) 371 (12, M⁺), 342 (7), 298 (29), 264 (20), 208 (22), 180 (10), 137 (13), 91 (100), 65 (6%).

4.3.16. (S)-Diisopropyl 2-aminobutanephosphonate (2f). Colourless oil; $[\alpha]_D^{20} = +3.3$ (*c* 0.70, CH₃OH); ν_{max} (liquid film) 3372, 2979, 2935, 2878, 1467, 1386, 1375, 1239, 1010, 984 cm⁻¹; $\delta_{\rm H}(300 \,{\rm MHz}, {\rm CDCl}_3)$ 4.76–4.68 (2H, m, OCH(CH₃)₂), 3.19–3.00 (1H, m, CHNH₂), 1.96–1.83 (2H, m, CH₂P(O)), 1.74–1.43 (2H, m, CHCH₂CH₃), 1.33 (12H, dd, *J*=6.3, 1.8 Hz, OCH(CH₃)₂), 0.94 (3H, t, *J*=7.2 Hz, CHCH₂CH₃); *m*/*z* (EI) 238 (100, M⁺+1), 208 (19), 196 (12), 166 (18), 124 (68), 106 (21), 96 (18), 58 (17%); HRMS (EI): M⁺, found: 237.1486. C₁₀H₂₄NO₃P requires 237.1494.

4.3.17. (*R*)-Diisopropyl 2-acetylaminobutanephosphonate (**3f**). Colourless oil; $[\alpha]_{D}^{20} = +10.6$ (*c* 0.70, CH₃OH); ν_{max} (liquid film) 3447, 3284, 2979, 2936, 2879, 1657, 1552, 1386, 1375, 1228, 988 cm⁻¹; $\delta_{\rm H}(300 \text{ MHz, CDCl}_3)$ 6.50 (1H, d, *J*=8.1 Hz, N*H*), 4.80–4.61 (2H, m, OC*H*(CH₃)₂), 4.22–4.10 (1H, m, C*H*NH) 2.09–1.91 (2H, m, C*H*₂P(O)), 1.98 (3H, s, COC*H*₃), 1.71–1.61 (2H, m, CHC*H*₂CH₃), 1.33 (12H, dd, *J*=5.1, 1.2 Hz, OCH(C*H*₃)₂), 0.92 (3H, t, *J*=7.5 Hz, CHCH₂CH₃); *m/z* (EI) 279 (7, M⁺), 250 (16), 208 (60), 178 (42), 166 (61), 152 (20), 137 (30), 124 (100), 106 (25), 96 (28), 43 (69%); HRMS (EI): M⁺, found: 279.1614. C₁₂H₂₆NO₄P requires 279.1600.

4.3.18. (*S*)-Diisopropyl 2-benzyloxycarbonylaminobutanephosphonate (4f). Colourless oil; [Found: C, 58.01; H, 8.33; N, 3.55. $C_{18}H_{30}NO_5P$ requires C, 58.21; H, 8.14; N, 3.77%]; $[\alpha]_{D}^{20}$ =-1.0 (*c* 1.05, CH₃OH); ν_{max} (liquid film) 3271, 3036, 2979, 2939, 2878, 1722, 1538, 1284, 1243, 983 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{CDCl}_3)$ 7.38-7.26 (5H, m, C₆H₅), 5.45 (1H, d, *J*=7.8 Hz, N*H*), 5.10 (2H, s, OCH₂Ph), 4.78-4.61 (2H, m, OCH(CH₃)₂), 3.97-3.81 (1H, m, CHNH), 2.05-1.81 (2H, m, CH₂P(O)), 1.76-1.61 (2H, m, CHCH₂CH₃), 1.32-1.24 (12H, m, OCH(CH₃)₂), 0.93 (3H, t, *J*=7.2 Hz, CHCH₂CH₃); *m/z* (EI) 371 (10, M⁺), 342 (10), 298 (4), 270 (7), 256 (12), 214 (41), 180 (33), 137 (12), 91 (100), 65 (9%).

4.3.19. Diethyl 2-amino-3-butenephosphonate (1g). Colourless oil; ν_{max} (liquid film) 3476, 3369, 2984, 2908, 1393, 1249, 1052, 1027, 966 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{CDCl}_3)$ 5.81–5.73 (2H, m, $CH_2=CH$), 5.60–5.54 (1H, m, $CH_2=CH$), 4.16–4.05 (4H, m, OCH_2CH_3), 3.33–3.29 (1H, m, $CHNH_2$), 2.63–2.54 (2H, m, $CH_2P(O)$), 1.35–1.30 (6H, m, OCH_2CH_3); m/z (EI) 207 (1, M⁺), 178 (4), 133 (9), 109 (4), 97 (6), 81 (8), 69 (100), 54 (5), 43 (10%); HRMS (EI): M⁺, found: 207.1030. $C_8H_{18}NO_3P$ requires 207.1024.

4.3.20. Diethyl 2-acetylamino-3-butenephosphonate (3g). Colourless oil; ν_{max} (liquid film) 3427, 3300, 2988, 2936, 1655, 1557, 1234, 1026, 972 cm⁻¹; $\delta_{H}(300 \text{ MHz, CDCl}_3)$ 6.15 (1H, s, N*H*), 5.67–5.57 (3H, m, C*H*=C*H*₂), 4.15–4.05 (4H, m, OCH₂CH₃), 3.88–3.83 (1H, m, C*H*NH), 2.63–2.53 (2H, dd, *J*=21.3, 6.0 Hz, C*H*₂P(O)), 1.99 (3H, s, COC*H*₃), 1.32 (6H, t, *J*=6.9 Hz, OCH₂CH₃); *m*/*z* (EI) 249 (6, M⁺), 234 (43), 206 (34), 191 (37), 152 (37), 140 (37), 125 (61), 97 (63), 70 (49), 56 (58), 43 (100%); HRMS (EI): M⁺, found: 249.1129. C₁₂H₂₆NO₄P requires 249.1130.

4.3.21. (*S*)-2-Aminopropanephosphonic acid (5).^{2a} Colourless oil; $[\alpha]_D^{20}$ =+3.7 (*c* 0.75, 1 M NaOH); ν_{max} (liquid film) 3388, 2988, 1617, 1500, 1181, 1071, 998 cm⁻¹; δ_H (300 MHz, D₂O): 3.50-3.42 (1H, m, CHCH₃), 1.92–1.81 (2H, m, CH₂P(O)), 1.24 (3H, d, J= 6.9 Hz, CHCH₃).

4.3.22. (*R*)-Diethyl 1-aminoethanephosphonate (7a).¹⁴ Colourless oil; $[\alpha]_D^{20} = -8.0$ (*c* 1.10, CH₃OH); ν_{max} (liquid film) 3374, 3296, 2982, 2909, 1238, 1058, 1029, 962 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 4.18–4.13 (4H, m, OCH₂CH₃), 3.20–3.08 (1H, m, CHNH₂), 1.38–1.30 (9H, m, OCH₂CH₃, CHCH₃); *m*/*z* (EI) 181 (1, M⁺), 138 (2), 111 (8), 93 (2), 83 (9), 82 (12), 65 (5), 44 (100%).

4.3.23. (*S*)-Diethyl 1-acetylaminoethanephosphonate (**8a**).¹⁵ Colourless oil; $[\alpha]_D^{20}$ =+57.2 (*c* 1.00, CH₃OH); ν_{max} (liquid film) 3450, 3265, 2985, 2938, 1662, 1547, 1230, 1055, 1025, 970 cm⁻¹; $\delta_{\text{H}}(300 \text{ MHz}, \text{CDCl}_3)$ 6.37 (1H, d, *J*=8.4 Hz, N*H*), 4.57–4.46 (1H, m, C*H*CH₃), 4.19–4.07 (4H, m, OCH₂CH₃), 2.02 (3H, s, COCH₃), 1.40–1.25 (9H, m, OCH₂CH₃, CHCH₃); *m/z* (EI): 223(1, M⁺), 180 (6), 138 (10), 111(15), 86 (39), 69 (11), 44 (100%).

4.3.24. (*R*)-Diethyl 1-benzyloxycarbonylaminoethanephosphonate (9a). Colorless oil; [Found: C, 53.35; H, 7.03; N, 4.44. $C_{14}H_{22}NO_5P$ requires C, 53.33; H, 7.03; N, 4.44%]; $[\alpha]_D^{20} = -22.4$ (*c* 1.80, CH₃OH); ν_{max} (liquid film) 3239, 3037, 2983, 2937, 2910, 1721, 1541, 1301, 1230, 1044, 1027, 969 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{ CDCl}_3)$ 7.36–7.33 (5H, m, C_6H_5), 5.16–5.07 (3H, m, NH, OCH₂Ph), 4.17– 4.08 (5H, m, OCH₂CH₃, CHCH₃), 1.43–1.23 (9H, m, OCH₂CH₃, CHCH₃); *m/z* (EI): 315(11, M⁺), 262 (1), 228 (5), 178 (10), 134 (22), 109 (7), 91 (100), 65 (8%).

4.3.25. (*R*)-Dipropyl 1-aminoethanephosphonate (7b). Colorless oil; $[\alpha]_{20}^{20} = -1.2$ (*c* 1.00, CH₃OH); ν_{max} (liquid film) 3467, 3377, 2971, 2939, 2881, 1232, 1068, 997 cm⁻¹; $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 4.07–4.00 (4H, m, OCH₂CH₂CH₃), 3.19–3.11 (1H, m, CHNH₂), 1.73–1.65 (4H, m, OCH₂-CH₂CH₃), 1.34 (3H, q, *J*=17.7, 7.2 Hz, CHCH₃), 0.97 (6H, t, *J*=7.5 Hz, OCH₂CH₂CH₃); *m/z* (EI) 209 (4, M⁺), 194 (1), 168 (5), 153 (5), 138 (3), 125 (8), 111 (7), 96 (7), 83 (24), 82 (18), 44 (100%); HRMS (EI): M⁺, found: 209.1158. C₈H₂₀NO₃P requires 209.1181.

4.3.26. (*S*)-Dipropyl 1-acetylaminoethanephosphonate (**8b**). Colorless oil; [Found: C, 48.05; H, 8.79; N, 5.37. $C_{10}H_{22}NO_4P$ requires C, 47.80; H, 8.83; N, 5.57]; $[\alpha]_{D}^{20}$ =+56.4 (*c* 0.50, CH₃OH); ν_{max} (liquid film) 3467, 3265, 2973, 2940, 1882, 1663, 1548, 1230, 1066, 1005 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{CDCl}_3)$ 6.34 (1H, d, *J*=9.3 Hz, N*H*), 4.56–4.50 (1H, m, C*H*CH₃), 4.07–3.97 (4H, m, OCH₂CH₂CH₃), 2.02 (3H, s, COC*H*₃), 1.74–1.64 (4H, m, OCH₂CH₂CH₃), 1.37 (3H, q, *J*=16.8, 7.5 Hz, CHCH₃), 0.99–0.92 (6H, m, OCH₂CH₂CH₃); *m/z* (EI) 251 (1, M⁺), 210 (14), 208 (10), 192 (5), 166 (6), 150 (13), 125 (36), 86 (84), 83 (45), 69 (27), 44 (100%).

4.3.27. (*R*)-Dipropyl 1-benzyloxycarbonylaminoethanephosphonate (9b). Colourless oil; [Found: C, 55.87; H, 7.90; N, 3.82. $C_{16}H_{26}NO_5P$ requires C, 55.97; H, 7.63; N, 4.08%]; $[\alpha]_D^{20}$ =-15.5 (*c* 1.20, CH₃OH); ν_{max} (liquid film) 3239, 3037, 2971, 2939, 2881, 1721, 1542, 1253, 1230, 1056, 1002 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.35-7.27 (5H, m, C_6H_5), 5.20-5.11 (3H, m, NH, OCH₂Ph), 4.20-4.09 (1H, m, CHCH₃), 4.13-3.95 (4H, m, OCH₂CH₂CH₃), 1.75-1.60

(4H, m, OCH₂CH₂CH₃), 1.39 (3H, q, J=16.2, 7.2 Hz, CHCH₃), 0.96–0.88 (6H, m, OCH₂CH₂CH₃); *m*/*z* (EI) 343 (11 M⁺), 256 (5), 208 (7), 178 (10), 172 (4), 134 (27), 123 (6), 91 (100), 83 (7), 65 (7%).

4.3.28. (*R*)-Diisopropyl 1-aminoethanephosphonate (7c).¹⁶ Colourless oil; $[\alpha]_{20}^{20}$ =-1.5 (*c* 0.85, CH₃OH); ν_{max} (liquid film) 3375, 3296, 2980, 2935, 2876, 1386, 1375, 1238, 1110, 983 cm⁻¹; $\delta_{\rm H}(300 \text{ MHz}, \text{ CDCl}_3)$ 4.76–4.70 (2H, m, OCH(CH₃)₂), 3.07–3.02 (1H, m, CHNH₂), 1.36–1.30 (15H, m, OCH(CH₃)₂, CHCH₃); *m*/*z* (EI) 209 (1 M⁺), 194 (5), 152 (8), 124 (11), 110 (19), 96 (35), 82 (16), 70 (43), 44 (100%).

4.3.29. (*S*)-Diisopropyl 1-acetylaminoethanephosphonate (8c). Colourless oil; [Found: C, 47.53; H, 8.49; N, 5.38. $C_{10}H_{22}NO_4P$ requires C, 47.80; H, 8.83; N, 5.57]; $[\alpha]_{D}^{20}$ =+55.3 (*c* 0.55, CH₃OH); ν_{max} (liquid film) 3264, 2983, 293.8, 2876, 2820, 1681, 1551, 1388, 1375, 1228, 985 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{CDCl}_3)$ 6.30 (1H, d, *J*=6.9 Hz, N*H*), 4.74–4.68 (2H, m, OC*H*(CH₃)₂), 4.05–4.40 (1H, m, C*H*CH₃), 2.03 (3H, s, COC*H*₃), 1.39–1.30 (15H, m, OCH(CH₃)₂, CHC*H*₃); *m*/*z* (EI) 251 (1, M⁺), 210 (3), 192 (2), 166 (8), 150 (26), 124 (52), 109 (11), 86 (36), 82 (20), 69 (18), 44 (100), 43 (64%).

4.3.30. (*R*)-Diisopropyl 1-benzyloxycarbonylaminoethanephosphonate (9c). Colourless oil; [Found: C, 55.74; H, 7.49; N, 3.93. $C_{16}H_{26}NO_5P$ requires C, 55.97; H, 7.63; N, 4.08%]; $[\alpha]_D^{20} = -18.9$ (*c* 0.55, CH₃OH); ν_{max} (liquid film) 3236, 3037, 2981, 2938, 2876, 1721, 1541, 1269, 1251, 1228, 1047, 990 cm⁻¹; $\delta_H(300 \text{ MHz, CDCl}_3)$ 7.36–7.26 (5H, m, C_6H_5), 5.11 (2H, s, OCH₂Ph), 5.03 (1H, d, *J*=9.3 Hz, N*H*), 4.78–4.61 (2H, m, OCH(CH₃)₂), 4.13–4.08 (1H, m, CHCH₃), 1.36–1.24 (15H, m, OCH(CH₃)₂), CHCH₃); *m*/*z* (EI) 343 (7, M⁺), 301 (4), 256 (5), 242 (3), 208 (7), 178 (10), 166 (7), 134 (24), 124 (23), 91 (100), 82 (5), 65 (7%).

4.3.31. (*R*)-Diethyl 1-aminopropanephosphonate (7d).¹⁷ Colourless oil; $[\alpha]_D^{20} = -2.7$ (*c* 1.10, CH₃OH); ν_{max} (liquid film) 3468, 3382, 2982, 2910, 1393, 1231, 1056, 1027, 963 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{ CDCl}_3)$ 4.22–4.12 (4H, m, OCH₂CH₃), 2.95–2.86 (1H, m, CHNH₂), 1.95–1.85 (1H, m, CHCH₂CH₃), 1.60–1.51 (1H, m, CHCH₂CH₃), 1.36 (6H, t, *J*=7.2 Hz, OCH₂CH₃), 1.90 (3H, t, *J*=7.5 Hz, CHCH₂CH₃); *m*/*z* (EI) 195 (1, M⁺), 166 (2), 138 (4), 110 (7), 82 (8), 65 (6), 58 (100), 41 (6%).

4.3.32. (*S*)-Diethyl 1-acetylaminopropanephosphonate (8d). Colourless oil; $[\alpha]_{10}^{20} = +14.4$ (*c* 0.50, CH₃OH); ν_{max} (liquid film) 3437, 3265, 2980, 2936, 2879, 1661, 1549, 1234, 1052, 1025, 971 cm⁻¹; $\delta_{\rm H}(300 \text{ MHz, CDCl}_3)$ 6.22 (1H, d, *J*=9.9 Hz, N*H*), 4.43–4.43 (1H, m, *CH*NH), 4.18–4.05 (4H, m, OCH₂CH₃), 2.05 (3H, s, COCH₃), 1.98–1.81 (1H, m, CHCH₂CH₃), 1.67–1.50 (1H, m, CHCH₂CH₃), 1.35–1.25 (6H, m, OCH₂CH₃), 0.99 (3H, t, *J*=7.2 Hz, CHCH₂CH₃); *m/z* (EI) 237 (1, M⁺), 194 (2), 166 (3), 138 (8), 111 (10), 100 (45), 83 (9), 58 (100), 43 (16%); HRMS (EI): M⁺, found: 237.1126. C₈H₂₀NO₃P requires 237.1130.

4.3.33. (S)-Diethyl 1-benzyloxycarbonylaminopropanephosphonate (9d). Colourless oil; [Found: C, 54.64; H, 7.35; N, 4.28. $C_{10}H_{22}NO_5P$ requires C, 54.71; H, 7.35; N, 4.25]; $[\alpha]_{20}^{20} = -24.7$ (*c* 0.70, CH₃OH); ν_{max} (liquid film) 3238, 3037, 2979, 2910, 1720, 1541, 1282, 1028, 970 cm⁻¹; $\delta_{H}(300 \text{ MHz, CDCl}_3)$ 7.36–7.27 (5H, m, C₆H₅), 5.17–5.07 (3H, m, NH, OCH₂Ph), 4.16–3.96 (5H, m, OCH₂CH₃, CHNH), 1.94–1.87 (1H, m, CHCH₂CH₃), 1.68–1.57 (1H, m, CHCH₂CH₃), 1.63–1.23 (6H, m, OCH₂CH₃), 1.01 (3H, t, *J*=7.5 Hz, CHCH₂CH₃); *m/z* (EI) 329 (8, M⁺), 228 (7), 192 (7), 166 (2), 148 (37), 109 (5), 91 (100), 65 (7%).

4.3.34. (*R*)-Diethyl 1-(1-methoxy)acetylaminopropanephosphonate (10d). Colourless oil; [Found: C, 44.99; H, 8.12; N, 5.24. $C_{10}H_{22}NO_5P$ requires C, 44.94; H, 8.30; N, 5.24]; $[\alpha]_{20}^{20}$ =+25.1 (*c* 0.90, CH₃OH); ν_{max} (liquid film) 3414, 3271, 2980, 2937, 1679, 1525, 1235, 1116, 1050, 1024, 971 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{ CDCl}_3)$ 6.62 (1H, d, J=10.2 Hz, NH), 4.41–4.34 (1H, m, CHNH), 4.19–4.08 (4H, m, OCH₂CH₃), 3.96–3.93 (2H, m, COCH₂OCH₃), 3.46 (3H, s, OCH₃), 2.01–1.93 (1H, m, CHCH₂CH₃), 1.68–1.61 (1H, m, CHCH₂CH₃), 1.39–1.26 (6H, m, OCH₂CH₃), 1.00 (3H, t, J=7.5 Hz, CHCH₂CH₃); *m*/*z* (EI) 267 (1, M⁺), 222 (4), 194 (5), 166 (9), 130 (100), 122 (7), 105 (17), 70 (45), 58 (13), 45 (70%).

4.3.35. Diethyl 1-amino-2,2,2-trifluoroethanephosphonate (7e).¹⁸ Colourless oil; ν_{max} (liquid film) 3407, 3328, 2989, 2937, 1322, 1262, 1183, 1117, 1054, 1026, 977 cm⁻¹; $\delta_{H}(300 \text{ MHz, CDCl}_3) 4.30-4.20$ (4H, m, OCH₂CH₃), 3.59 (1H, dq, *J*=19.5, 8.4 Hz, CHNH₂), 1.37 (6H, dt, *J*=7.2, 0.6 Hz, OCH₂CH₃); *m/z* (EI) 235 (1, M⁺), 138 (22), 120 (11), 111 (20), 106 (100), 82 (20), 79 (38), 59 (18), 44 (18%).

4.3.36. (*R*)-Dipropyl 1-aminopropanephosphonate (7f). Colourless oil; [Found: C, 48.28; H, 9.63; N, 6.40. $C_9H_{22}NO_3P$ requires C, 48.42; H, 9.93; N, 6.27]; $[\alpha]_D^{20} = -1.9$ (*c* 0.65, CH₃OH); ν_{max} (liquid film) 3484, 3379, 3303, 1968, 1939, 2896, 1465, 1236, 1068, 995 cm⁻¹; $\delta_{H}(300 \text{ MHz, CDCl}_3)$ 4.08–4.00 (4H, m, OCH₂CH₂CH₃), 2.93–2.91 (1H, m, CHNH₂), 1.97–1.82 (1H, m, CHCH₂-CH₃), 1.75–1.65 (4H, m, OCH₂CH₂CH₃), 1.60–1.53 (2H, m, CHCH₂CH₃), 1.08 (3H, t, *J*=7.2 Hz, CHCH₂CH₃), 0.99–0.94 (6H, m, OCH₂CH₂CH₃); *m/z* (EI) 223 (1, M⁺), 152 (1), 110 (4), 83 (16), 82 (7), 65 (3), 58 (100), 43 (10%).

4.3.37. (*R*)-Dipropyl 1-benzyloxycarbonylaminopropanephosphonate (9f). Colourless oil; [Found: C, 57.07; H, 7.80; N, 3.67. $C_{17}H_{28}NO_5P$ requires C, 57.13; H, 7.90; N, 3.92]; $[\alpha]_{20}^{20} = -22.9$ (*c* 0.80, CH₃OH); ν_{max} (liquid film) 3237, 2970, 2938, 2880, 1721, 1540, 1456, 1282, 1230, 1064, 990 cm⁻¹; $\delta_{H}(300 \text{ MHz}, \text{CDCl}_3)$ 7.37–7.28 (5H, m, C_6H_5), 5.18–5.02 (3H, m, N*H*, OC*H*₂Ph), 4.04–3.94 (5H, m, OC*H*₂CH₃, C*H*NH), 1.98–1.83 (1H, m, CHC*H*₂CH₃), 1.71–1.60 (6H, m, OCH₂CH₂CH₃, CHCH₂CH₃); *m/z* (EI) 357 (8, M⁺), 256 (7), 222 (8), 192 (17), 166 (4), 148 (46), 123 (5), 91 (100), 83 (7), 65 (6%).

4.3.38. (*S*)-Dipropyl 1-(1-methoxy)acetylaminopropanephosphonate (10f). Colourless oil; $[\alpha]_D^{20} = +32.2$ (*c* 1.30, CH₃OH); ν_{max} (liquid film) 3416, 3268, 2971, 2939, 2881, 1687, 1521, 1239, 1065, 1001 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 6.62 (1H, d, *J*=9.9 Hz, N*H*), 4.45–4.32 (1H, m, C*H*NH), 4.06–3.43 (6H, m, OCH₂CH₂CH₃, COCH₂OCH₃), 3.42 (3H, s, OCH₃), 2.03–1.92 (1H, m, CHCH₂CH₃), 1.74–1.60 (5H, m, OCH₂CH₂CH₃, CHCH₂CH₃), 1.02–0.92 (9H, m, OCH₂CH₂CH₃, CHCH₂CH₃); m/z (EI) 296 (2, M+1⁺), 254 (4), 194 (4), 166 (15), 148 (7), 130 (100), 83 (11), 70 (37), 45 (58%); HRMS (EI): M⁺, found: 295.1560. C₁₂H₂₆NO₅P requires 295.1549.

4.3.39. (*R*)-Diisopropyl 1-aminopropanephosphonate (7g).¹⁹ Colourless oil; $[\alpha]_{20}^{20}$ =+1.4 (*c* 0.85, CH₃OH); ν_{max} (liquid film) 3472, 3306, 2979, 2877, 1375, 1236, 1109, 982 cm⁻¹; $\delta_{\rm H}(300 \text{ MHz}, \text{ CDCl}_3)$ 4.76–4.70 (2H, m, OCH(CH₃)₂), 2.85–2.77 (1H, m, CHNH₂), 1.93–1.81 (1H, m, CHCH₂CH₃), 1.57–1.43 (1H, m, CHCH₂CH₃), 1.33 (12H, d, *J*=6.0 Hz, OCH(CH₃)₂), 1.07 (3H, t, *J*=7.2 Hz, CHCH₂CH₃); *m*/*z* (EI) 223 (1, M⁺), 180 (1), 166 (2), 138 (4), 124 (6), 110 (7), 82 (11), 58 (100), 43 (10), 41 (12%).

4.3.40. (*R*)-Diisopropyl 1-benzyloxycarbonylaminopropanephosphonate (9g). Colourless oil; [Found: C, 56.98; H, 7.83; N, 3.69. $C_{17}H_{28}NO_5P$ requires C, 57.13; H, 7.90; N, 3.92]; $[\alpha]_{20}^{20}$ =-15.6 (*c* 0.75, CH₃OH); ν_{max} (liquid film) 3235, 3037, 2979, 2936, 2877, 1721, 1540, 1280, 1246, 1228, 1010, 990 cm⁻¹; $\delta H(300 \text{ MHz, CDCl}_3)$ 7.37–7.28 (5H, m, C_6H_5), 5.14 (2H, s, OCH₂Ph), 4.99 (1H, d, *J*=10.2 Hz, NH), 4.74–4.64 (2H, m, OCH(CH₃)₂), 3.98–3.91 (1H, m, CHNH), 1.96–1.87 (1H, m, CHCH₂CH₃), 1.60–1.50 (1H, m, CHCH₂CH₃), 1.33–1.22 (12H, m, OCH(CH₃)₂), 1.01 (3H, t, *J*=7.5 Hz, CHCH₂CH₃); *m/z* (EI) 357 (6, M⁺), 315 (2), 273 (2), 256 (9), 222 (9), 192 (15), 166 (6), 148 (39), 124 (13), 91 (100), 65 (6), 43 (9%).

4.3.41. (*S*)-Diisopropyl 1-(1-methoxy)acetylaminopropanephosphonate (10g). Colourless oil; $[\alpha]_{20}^{20}$ =+22.8 (*c* 2.35, CH₃OH); ν_{max} (liquid film) 3416, 3276, 2980, 2937, 2879, 1682, 1522, 1231, 1109, 989 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.61 (1H, d, *J*=10.2 Hz, N*H*), 4.76–4.67 (2H, m, OC*H*(CH₃)₂), 4.38–4.24 (1H, m, *CH*NH), 4.02–3.87 (2H, m, COC*H*₂OCH₃), 3.44 (3H, s, OC*H*₃), 2.05–1.90 (1H, m, CHC*H*₂CH₃), 1.67–1.54 (1H, m, CHC*H*₂CH₃), 1.35–0.99 (12H, m, OCH(CH₃)₂), 0.98 (3H, t, *J*=7.2 Hz, CHCH₂-CH₃); *m*/*z* (EI) 296 (7, M⁺+1), 254 (5), 194 (18), 166 (20), 130 (100), 124 (21), 102 (7), 82 (11), 70 (43), 45 (65%); HRMS (EI): M⁺, found: 295.1552. C₁₂H₂₆NO₅P requires 295.1549.

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 20272075 and 20072052).

References

1. (a) Kafarski, P.; Lejczak, B. Beitr. Wirkstofforschung 1985,

25, 1–5. (b) Yuan, C. Y.; Qi, Y. M. Acta Chimi. Sinica **1986**, 44, 280–287. (c) Yuan, C. Y.; Qi, Y. M. Synthesis **1986**, 821–825. (d) Kafarski, P.; Lejczak, B. Phosphorus Sulfur SiliconRelat. Elem. **1991**, 63, 193–215.

- (a) Oshikawa, T.; Yamashita, M. Bull. Chem. Soc. 1990, 63, 2728–2730. (b) Yuan, C. Y.; Cui, S. H. Phosphorus Sulfur Silicon Relat. Elem. 1991, 55, 159–164. (c) Yuan, C. Y.; Li, S. S.; Wang, G. Q. Chin. Chem. Lett. 1993, 4, 753–756. (d) Mikolajcyk, M.; Lyzwa, P.; Drabowicz, J.; Wieczorek, M. W.; Blaszczyk, J. J. Chem. Soc. Chem. Commum. 1996, 13, 1503–1504.
- (a) Wong, C. H.; Whitesides, G. M. Enzymes in Synthetic Organic Chemistry. Tetrahedron Organic Series; Pergamon: London, 1994; Chapter 2; pp 41–113. (b) Drauz, K.; Waldmann, H. Enzyme Catalysis in Organic Synthesis; VCH: Weinhein, 1995; Vol. II. Chapter 11; pp 335–697.
 (c) Faber, K. Biotransformations in Organic Chemistry; 3rd ed. Springer: Beijing, 1997; Chapter 2, pp 23–245.
- 4. (a) Adamczyk, M.; Grote, J. *Tetrahedron: Asymmetry* 1997, 8, 2099–2100. (b) García, M. J.; Rebolledom, R.; Gotor, V. *Tetrahedron Lett.* 1993, *34*, 6141–6142. (c) Puertas, S.; Rebolledo, R.; Gotor, V. *J. Org. Chem.* 1996, *61*, 6024–6027. (d) Zoete, M. C.; Kock-van Dalen, A. C.; van Rantwijk, F.; Sheldon, R. A. *J. Mol. Catal. B: Enzyme* 1996, *2*, 19–25.
- (a) Zhang, Y. H.; Yuan, C. Y.; Li, Z. Y. *Tetrahedron* 2002, 58, 2973–2978.
 (b) Zhang, Y. H.; Li, Z. Y.; Yuan, C. Y. *Tetrahedron Lett.* 2002, 43, 3247–3249.
- (a) Sanchez, M. V.; Rebolledo, F.; Gotor, V. *Tetrahedron: Asymmetry* **1997**, *8*, 37–40. (b) Iglesias, E. L.; Rebolledo, F.; Gotor, V. *Tetrahedron: Asymmetry* **2000**, *11*, 1047–1050.
- Wescott, C. R.; Klibanov, A. M. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1994, 1206, 1–9.
- Chen, C. S.; Fujimoto, Y.; Girdaukas, G.; Shi, C. J. J. Am. Chem. Soc. 1982, 104, 7294–7299.
- 9. (a) Orrenius, C.; Oehrner, N.; Rottiui, D.; Mattson, A. *Tetrahedron: Asymmetry* 1995, *6*, 1217–1220. (b) Rotticu, D.; Halffner, F.; Orrenius, C.; Norin, T.; Hult, K. *J. Mol. Catal. B* 1998, *5*, 267–272.
- 10. Balkenhohl, F.; Ditrich, K.; Hauer, B.; Ladner, W. J. Prakt. Chem./Chem.-Ztg, GE 1997, 4, 381-384.
- 11. Gajda, T.; Matusiak, M. Synth. Commun. 1992, 22, 2193–2203.
- 12. Wolef, H. *Organic Reactions*; Wiley: New York, 1947; Vol. 3. Chapter 8, pp 327–329.
- 13. Varlet, J. M. Synth. Commun. 1978, 8, 335-343.
- 14. Kametani, T.; Suzuki, Y.; Kigasawa, K.; Hiiragi, M. *Heterocycles* **1982**, *18*, 295–319.
- 15. Kudzin, Z. H.; Luczak, J. Synthesis 1995, 509-511.
- Chakraborty, S. K.; Engel, R. Synth. Commun. 1991, 21(8), 1039–1046.
- 17. Chalmers, M. E.; Kosolapoff, G. M. J. Am. Chem. Soc. 1953, 75, 5278–5280.
- Flynn, G. A.; Beight, D. W.; Bohme, E. H. W.; Metcalf, B. W. *Tetrahedron Lett.* **1985**, *26*, 285–288.
- Green, D.; Patel, G.; Elgendy, S.; Baban, J. A.; Skordalakes, E. *Phosphorus Sulfur Silicon Relat. Elem.* 1996, 109, 533–536.